EXPECTED NUMBER OF REAL ZEROS OF A CLASS OF RANDOM HYPERBOLIC POLYNOMIAL
نویسندگان
چکیده
منابع مشابه
Mean Number of Real Zeros of a Random Hyperbolic Polynomial
Consider the random hyperbolic polynomial, f(x) = 1a1 coshx+···+np × an coshnx, in which n and p are integers such that n ≥ 2, p ≥ 0, and the coefficients ak(k = 1,2, . . . ,n) are independent, standard normally distributed random variables. If νnp is the mean number of real zeros of f(x), then we prove that νnp = π−1 logn+ O{(logn)1/2}.
متن کاملOn the Expected Number of Zeros of a Random Harmonic Polynomial
We study the distribution of complex zeros of Gaussian harmonic polynomials with independent complex coefficients. The expected number of zeros is evaluated by applying a formula of independent interest for the expected absolute value of quadratic forms of Gaussian random variables.
متن کاملOn Expected Number of Level Crossings of a Random Hyperbolic Polynomial
Let g1(ω), g2(ω), . . . , gn(ω) be independent and normally distributed random variables with mean zero and variance one. We show that, for large values of n, the expected number of times the random hyperbolic polynomial y = g1(ω) coshx + g2(ω) cosh 2x + · · · + gn(ω) coshnx crosses the line y = L, where L is a real number, is 1 π logn+ O(1) if L = o( √ n) or L/ √ n = O(1), but decreases steadi...
متن کاملCovariance of the number of real zeros of a random trigonometric polynomial
For random coefficients aj and bj we consider a random trigonometric polynomial defined as Tn(θ) = ∑n j=0{aj cos jθ + bj sin jθ}. The expected number of real zeros of Tn(θ) in the interval (0,2π) can be easily obtained. In this note we show that this number is in fact n/ √ 3. However the variance of the above number is not known. This note presents a method which leads to the asymptotic value f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Pure and Apllied Mathematics
سال: 2014
ISSN: 1311-8080,1314-3395
DOI: 10.12732/ijpam.v97i1.2